Time : 3 Hours

Max. Marks : 60

(1) Let $A \subseteq \mathbb{R}^2$ be a countable subset. Show that $\mathbb{R}^2 - A$ is path connected. [12]

(2) Construct a homeomorphism

Answer all questions. Give complete justifications.

$$f: \{(x,y) \in \mathbb{R}^2 : y \ge 0\} \longrightarrow \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, (x,y) \ne (0,1)\}.$$
Both the spaces have the subspace topology of \mathbb{R}^2 . [12]

(3) Let $A \subseteq \mathbb{R}^{\omega}$ be the subset

 $A = \{ (x_i) \in \mathbb{R}^{\omega} : x_i = 0 \text{ for all but finitely many } i \}.$

Prove that A is dense in \mathbb{R}^{ω} with the product topology. Is A dense in \mathbb{R}^{ω} with the box topology? Recall that, as a set, \mathbb{R}^{ω} is the countable product of \mathbb{R} with itself. [6+6]

(4) Let $X = \mathbb{R} \times \{0, 1\}$ with the product topology where $\{0, 1\}$ has the discrete topology. Let \sim be the equivalence relation on X defined as follows. Given $x, x' \in \mathbb{R}$ and $t, s \in \{0, 1\}$ we declare

$$(x,t) \sim (x',s)$$

if and only if one of the following is satisfied

(a)
$$x = x', |x| > 1$$

(b) $x = x', |x| \le 1 \text{ and } t = s.$

Let X^* denote the set of equivalence classes of X under the above equivalence relation. We give X^* the quotient topology with respect to the surjective function $p: X \longrightarrow X^*$ which takes $y \in X$ to the equivalence class [y] of y. Decide whether X^* with the quotient topology satisfies the T_1 and Hausdorff axioms. (You may want to draw diagrams) [6+6]

(5) Given $x, y \in \mathbb{R}$ define

$$d(x,y) = |e^{-x} - e^{-y}|.$$

1

Show that d is a metric on \mathbb{R} . Decide whether (\mathbb{R}, d) is a complete metric space. Does d induce the usual topology on \mathbb{R} ? [2+8+2]